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This paper presemts a parser, which accepts any context~free grammar in BNF.notation and works in a time

proportional to n° in worst cases. Its gemeral strategy is of a predictive type,like Earley's algorithm

but a different organization and use of informations already obtained permits a better treatment of

recursivities and aubiguities.

1. INTRODUCTION

Among the numerous general context—free parsers
that have been described, Earley's algorithm
seems to be the more efficient for time and
space (Earley [i], [2]). But, in worst cases, it
still works in a time proportionmel to n’, if n
is the length of the input string. This paper
presents a parser, which accepts amy context-
free grammar in BNF notation and works in time
n? in vorst case. Tts gemeral strategy is of a
predictive type, like Earley's algorithm, but a
different organization and use of informaci

ved correct inm section 4. Section 5 is devoted

to theorical results : time n’ in general, time
n for LR(k) grammars without using a "lookahead"

in states. Section 6 gives several examples.

2. DEFINTTIONS AND NOTATIONS

2.1, Context-free grammars,

A context-free grammar is a quadruple G=(V,T,P,R)
where V is a finite sets of symbols, the vocabu-
lary ; TV is the set of terminal symbols,

N=U-T is the set of monterminal symbols, R& N is

a distingui

already obtained permits a better treatment of
recursivities and ambiguities, in particuler for
gramars with unbounded direct ambiguity for

. . o rime o3
which Earley's parsers runs in time n°.

New definitions for "state" and especially
"state set” are used. New types of state sets
are introduced : constructed step by step as par—
sing progresses, they obtain all informations
related to the recognition of a right recursive
derivation and are such that their processing

by different completer canmot generate twice

the same state except for at most one of them.
The other features of the algorithm are the way
in which state sets are constructed and ordered,
and the recursive action of completers processing

state sets and cutting out redundant informations,

Although logically complete, this paper is easier
to read if one is familiar with Earley's papxs ora
least with the informal explamation they present.
In section 2 basic terminalogy is imtroduced,

Section 3 describe the algorithm, which is pro-

1 called the root of
the grammar and P is a finite sec of production
rules written :

Dp hd C;
with D & N and cie v for I<j<p

»
s.d 1sped
5 P

If o and B are strings in V* then o3@ expresses
that there exist v,6,n& V*and AsN such that
amy 45, B=ynd and A »n is a production in P. The

symbol & denotes the transitive closure of = .

A sentential form is a string «&V”such that
Ra. A sentence is a sentential form aeT™.
The language L(G) defined by & grammar G is the
set of its sentences.

A denotes the empty string, E={AeN, A% A}.
The Luput string will be written X,...X . Letr
be a new terminal (~4T) and D a new nonterminal
(g W) = the rule D>Ré~is added to P and
X...X_ is transformed into X,...X j- (the modi-
fied input sentence for the modified grammar).
2.2. States :

For the description of the different steps of the

¥
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parse the algorthim builts states, A state is a
triple <p,j,f> where p, j and £ are integers

p(0spgd) is the number of a grammar rule

j(0¢isp) indicates a position in the rule's

right-hand side
£(0sfn) indicates a position :in the input
string.
Whenever it is not mecessary to distinguish sta-
tes <p,j,f> with the same values for p and j, we
shall also use another type of state : <p,j,F>
with the same meaning for p and j and where
F={f,1 I,Z,...,klﬂ(fi{n) is a set of positions
in the input string.

2.3. State Sets

Although we could also comsider that <p,j,F» is
a state set, we shall define as state sets :

5 the ser of all states used by the algo-
Tithm,

S;, Ogisnt] an ordered subsat of $(s=1)si),

Ogign+]
TEF=(f ), 00

U...Us
£ £

V0 eN, sPai<p,j,ives. jcit!
P 1 1P

T B )
s;={<p,j,E>e si1cp T},

X_ o .
sp={<p,j,f>€ si]

), these sets being
ordered by decreasing f, (and similarly for S,
T X,
Sps Spls

3P the set of all states that a completer
called by a state <p,p,F> will have to process

i . <MJge
recursively : let S (F,p)e; ) 5, Pana

s,E=s @ U Sz(F'.P'))~
p' 51, F"5€5, (F,p)
Defined like this SZ(F,p) is not a state set but
a set of state sets : therefore ome or more of
its elements can contain the same states. Sp will
be coustructed steply swep ia te algoritm fron S, (F,p)
by cutting out all unnecessary states as soon as
it finds them. This will be completed in 3.1.5.

3. ALGORITHM
3.1, The recognizer
3.1.1. Initialisstion : start with the state
<0,0,0> ia 8, all nonterminals unmarked and

t E ¢ to every state <p,j,F> in §; apply
one of the following operations :

THEORY OF COMPUTATION

¢4 c;”eu then PREDICTOR : if C3*! is an unmarked
nonterminal then for any r such that n;cl’)’I
dd <r,0,i> to §; and mark the nonterminal.
ci*Te 1 then scamnen ¢ 1f citlex,  add

» P i

&t 1By ta s

If j=p then COMPLETER :

=
R

for all states <p',j',£'>
in 5‘; ¢ there are five possibilities :
1)3i'+1=p and a state <p',j'+1,f"™ with £">f'
has been added to S; by the same completer
call : there is a right recursivity and the
state <p’,j",£'> can be deleted from E‘F’.

2) a state <p',j'+1,£'> has been already ad-
ded to §; (thers is su ambiguity) : if it is
by the same completer call thea the state
<@',j',£'> can be deleted from 5}

3) j'+1=p and there exist in S, a state

»£'> such that D, : there is also

an ambiguity. N

4) a state <p',j'+1,F">, such that f'¢ F", is
already in 5; ¢ change it in <p', i+, FUIED)
(it is in that way that the states of the

type <p,j,F> are constructed),

5) in any other case add <p',j'+1,f'> to si.
When there is no more state to process in 5,
vomark all nonterminals, add one to i and if
ign+! return ta E,
3.1.3. Termination :
X

if 5 ={<0,2,05} thea
1+ X, € L(G). If there exist i, Ogicas] such
that §;=f then X,...X &L(G).
3.1.4. Case of empty rules : if the grammar con-
tains empty rules, then if a state <p,j,F> such
that CI*kE is added to Sy, then the state
<p*1,F> must.be added to S, at the same time.
(The set E can be comstructed once for all when
the grammar is given).

3.1.5. Remarks

1) We can now complete the defimition of E; s it
is the set (which can sometimes contain twice or
moTe the same element) of all states in the ele~
ments of S,(F,p) less those thac are deleted in
cases § and 2 of the completer.

2) Case 2 of the completer permits to delete from
Eg all the states which, when completed, could

create more than once the same state.
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3) Case | of the completer treats right recursi-
vities : in that case each time the last state
in the recursivity (the one with the higher £}
is completed, all the others are antomatically
completed too. They are ot usefull and the cor—
st
keeps only the "wayouts" of the recursivity.

responding states can be deleted from 5§, which
4) Ordering of 5, ensure that the states in a
right recursivity are processed in order, from
the last ome.

5) Bouckaert et al. [4], [S] studies the more
efficient way to use the context in this type

of algorithm. The method given can be applied
straighforward here,

3.2. The analyser

To transform the recognizer of last paragraph,
into a parser, ome just needs to add a procedure
which construct the tree in the same time, Eadey
[1] gives a simple way to obtain this. It can be
easily adapted to this algorithm. However we

must say that in case of very ambiguous graumars,
we get only a "factorized tree” from which ail
the different trees can be obtained. This is qui-
te suffisant in practice, so mich more as some
grammars can give an infinite pumber of deriva-
tions, even for empty strings.

3.3. Implementation

4 detailed description of the implementation
would be tedious, so we shall give only a sketch
of it, Based mainly upon lists, it is similar to
the one given in Earley [1], but with a few dif-
ferences :

1) che sets ST (O¢ped), S} and 5] are orgamized
in different lists (instead of ome list for §).
2) the pointer i created by the predictor mocessing
<P,i,F>&§; is in fact a pointer towards the list
sz. In that way we get very simply the structure
of the list E; with a list of these pointers for
the different elements of F.

3) to delete a state we just remove one element
from a list.

4) the case of empty rules is simplified by the
use of E,

5) although its definition is more complicated,
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the completer operation does not take msch more
time : it is a recursive function organized as a

case instruction.

4. PROOF OF CORRECTNESS

4.1, Lewoa | : If <p,j,F>€5; then Yrfer :
. I
fei and cp“.c; B Hpupee Ky

4.

Lemma 3 : If 9,4, 5; and 0;‘1.4.5'177““;>
Xi+1"'xg (F+2<p,gen) then the state <p,j+z,F>.
will be added to 5 <if it 4o not @ element of
a vight recursivity.
4.3, Theorem I : RYX.
5, ,170<0,2,00).
The proofs are very simple and similar to the

ones of Bouckaert et al. [4]. However we must

X, if and only if

also use the rather obvious property that the
deletions does not modified the states created :
they only prevents the creation of more than om-
ce the same state in case 2 and of useless states

in case !.

5. RECOGNITION TIME

It is natural to take for uait of time an opera-
tion which is independant of the grammar and of
the string to parse. This choice is implementa—
tion dependant : we shall not discuss the problem
here. As our implementation is basically similar
te Earley's, his discussion holds uachanged and
we can take as "basic step” the generation of a
srate, i.e. the action of adding a state to $ or
atrempting to add one which is not necessary
(for example, in a completer call the number of
steps is the mmber of elements of 5F)
The following notations will be used :

@ = max p, Ospsd

C is a constant independant of the length

of the string
~i means proportionaliy to i, that is to say
a quantity which can grow with i.

S.t. Theorem 2 : the time required to recognize
any sentance of length n as ths member of the
language generated by amy given C-F grammar is
Bounded by Cn®.
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Proof et us prove that the number of states ge-
nerated by the algorithm is bounded by Ca’.

There are n state sets, less if the sentem
ce does not belong to the language.

In each state set the predictor generates
at most & states, ome for each rdle, since, at
step i, the predictor adds states of the form
<0,0,{i)> and only once for each mon-terminal.

In each state set the scanmer generates at
most dm states since, at step i, it processes om
1y the states of §; and, if c";”-xm, just modi-
fies j, without taking care of F.

In these two cases, the presence of empty
tules can involve the generation of at most dm
other states.

In each state set there are at most d com—
pleter main calls : by the states<p,j,Fs crea-
ted at step i-1 by the scamner and for which
§=p. Two cases must be considered :
1 F-(f],u.,ik]) with k1 ~i (as for UBDA 2) :
the completer must process all states in

P P
S§ L-.Sh .
fa £

1
2} k1 is not wi (for example | as for UBDA!) buc
at least ome of the states <p',i',F'>& s‘;‘ is

such that j'+1mp' (or 11" .cP B A) © then it
calls immediately the csmpleter? and so on. In
that case the completer can also process wi sta-
te secs : it adds recursively to §;

PuPy £ Paues,pup, £ >. Case 1 and 2 can oc-
cur in the same time. Anyway s state set is only
processed omce : s*i’ is processed by the completer
called by the first state of the form <p,p, £ >
in Si and the other states of this form in Si
just denote ambiguities.

Therefore a completer main call can process, at
wsc once, kI (wi) state sets. In these state
sets, and even in each of them, there can exist
states of the form <p',3',F'> with

Ers £1,..,60 ) and k2 ~i(SE contains at most
dnf states).

In that case the completer main call can generate
k! k2 states, 2 if ki and k2 are

In any
other case the number of states genmerated is bour

ded by dmi and the theorem holds. The problem is
therefore to prave that the numbex of states
really gemerated is in fact wi, because vi state
sets have already been completed togather, or
that the number of such calls is bounded indepen-~
dantly of i.

<P,P,FreS; with F= £ +oo)fy, implies by lemmal

0= ka 41t
45 the nuober of rules and non termimals is boun-—
ded but mot kl, this implies a recursivity in the
derivation of D_ : there must exist D_&N such

x .

. he

that D Bpa, D a, and D %a, D o, In the same
way <p',i" F'>6 8y £=F ,u. L E | with
Fr=(g],...,5),} tmplies by lemma 1

and there is a recursivity in the derivation of
cl,.,.cj:.

At each step of this last recursivity a state
<,0,£> is generated, In full gemerality it is
for a subset of F, but a subset containingwi
elements, so we can suppose here it is F itself,
In that way, as the derivation of D_ is recursive
and if the input sctring matches, we can obtain
in S a state of the form <p,p,F>, each time o,
is recognized., If this happens more than once,
the first completion of S0 can generate i’ sta-
tes, but the other ones only wi by constructicn
of the completer (In the cases of UBDAl and
UBDA2 where F gets one moTe element at each step,
the problem remains the same since the set F of
step i is the set of step i-1, which has already
been completed, plus one element).

The prodlem is thus to show that there canmot
exist wi different such recursivities of ~vi steps
in the derivation of a string of length i (which
could lead to ~i F's differing by wi elements

for the different steps).

As there is at most d non-terminals we can res-
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trict ourselves to ome : suppose D‘%u D, o" with
aeV% We can suppose a# A: in the case of empty
rules there should exist nonterminals derivable
as empty Tules in as many different ways as we
waat : it is possible (for axample A+AA, A+A)
but generates at most dm states since they are
all generated at the same step with the same £,
Therefore to have mi different recursivities
the string generated by o must have a length
growing with i and there cannot exist ari steps
of recursivity in a string of lemgth i.

This achieves the proof.

5.2, Theorem 3 :

the time required to recognize
any sentence of length n as the member of the
language generated by ar LR grammar is bownded
by on .

Proof : as in Lewis and Stearns [3] we say that
G is LR(k) if it is unambiguous and if for all

Wi Wy Wy VIET®, AEN,
RLw Aw,, A, R:Ni]wzvé and k:wiskiwl imply
R&bw, Awl. To. generate i’ states we must have
completed ~i E; containing vi elements during
the recognition of a substring of lemgth i, and,
among them, there must exist at least a state
<p,j,F> with F=(fl""'fkl)’ klwi.

1 J
lcisx x f;jffff.vucvfsf :::h B ev®
P P UEH i 0k 3
and this would imply ambiguities in the deriva-

This implies R3X

tion, The only solution is that Bl"“'akl are
such that one only can be matched with an impuc
string,all other possibilities being wrong.,
Moreover if G is LR(k) this detection mist ba
possible with only the first k terminals genera-—
ble by the 8. Therefore the only possibility

is 4 Tight Tecursivity but them we are in case 1
of the completer and ouly the possible "way outs"
of the recursivity are gemerated : at most wi
states for the whole recursivity (otherwise the
grammar would be amhiguous).

This achieves the proof.

6. EXAMPLES
We shall use a represenmtation similar to Earley's

[2] for states. States generated but mot added

are between ( ), followed by a #if this causes
deletion. States deleted are berween [ | followal
by the number of the step where this occur. We
suppose that <0,1,0> cannot be added before step

n,

§.1. Grammar RR : A~ aA ; A > a.

It is an example of grammar for which Earley's
algorithm is in time n® without lookahead. For
our algorithm it is in time n hecause only one
state remains in 5§, the other ones being deletad
at each step by case | of the completer. As it is
very simple we shall not detail ic here.

M A+ aka ; A~ a.

It is an example of nonambiguous grammar for
which our algorithm, just like Earley's needs

time and space n’. In this case ve have 8gma

which is not bounded. For this case both algori-
thms are similar, so we shall not detail it.
6.3, Grammar UBDA] A - AA, A > a,
In this example cases | and 2 occur both to per-
mit time n° instead of n> as for Earley's.
80 : R~> .A
FEYY
A+ La
51: A»>a.
A~ A
A+ .AA
A a
S2; A»a.
A=A
A AA.
[ER WY
A > LAA
A .a
S3: A=+a.
A+ AL
A aA,
(A > A
(A > AA.
@A > AA
A AL
A .a
Sh: A a.
LA+ AA
A AAL
(a+>a.a
(A -+ aa.
(4> AL
(A >aa
A+ aa
A .a

w

0] 4

om—-—-oooBO

1) (0)

o~

CLwoosmNNNN S

2) (1) (0)
[

e

rrgsmNNww

and so on ... )
Rem case 2 is always suffisant to get time n

as it results from proof of theorem 2.
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6.4. Grammar UBDA2 ; A~ Aka ; A~ a
In this case only case 2 permits deletions.
S0 = R+ A 0
A+ .A%a 0
A+ .a 0
Sl A a. 9
[a>8.8a 0]
A~ .Ada |
As.a 1
52 ¢ A a. 1
A>Ada )
A>Mha 0
A AMa 2
A+ .a 2
$3: Ava. 2
A Ada 2 (D)
A>Aha 1
A Aa. 0O
A >Ada 0
A~ A2 3
A~ .a 3
Sh: A a. 3
A AAa 3 ()
A+ Ada 2,0
A Ada, |
{A > A.Aa n
A->asa 0
A+ A2 4
A+ .a 4
55 A+a, 4
A>Ada 4 (2) (0)
A~ Aha 3,1
A+ Ada. 2,0
(A > AAa 2)
(A > Aa 1
A+ Ada 0)
A .AMa S
A>.a 5
S6: A a. 5
A Aa 5(3) (1)
A>Ada b (2) (0)
A+ MAa. 3,1
(A > Ada 3)
(A>asa 2,0
(A > Ak 1)
(A>a8a 0

and so on ...

7. CONCLUSION
On the practical side the parser described inm

this paper is not very efficient when compared

to specialized ones. But it has the advautage of
processing any context—free grammars without
transformation, which is very interesting in ap~
plications like syntactic macro-processors. If
we use the context to reduce the mumber of gene—
rated states, and a garbage collector for useless
states we obtain very good time and space perfor-
mances which is of crueial importance in these
applications, especially for the space.

On the theoretical side it seems very difficalt
to obtain a time n parser, but one could try to
enlarge the class of grammars processed in time
and space n, or at least to give a good defini-

tion of these classes.
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