1 e, ermtont ComputingSymposan 1973
M’lu[la/m Publ Co., 1974, i

a
& ot

P,

Ma

n ALEPH program consists of a oet of gramariike def

rrelated. The syntsctic and semantic simplicity of ALSPE
aspects of the dynamic behavior of the program can be
can be schieved throug
ic behavior includc a check on the use of

performed gpd output, properiy inte
haz three imporbant consequence:

The aspects of the

portedility

statically, .,uust;mtlal optimization
. 3

, & Lenguage Encoursging Program Elerurchy !

Rot Bosch, Dick Grune, Lambert Meertens
ematical Centre, msterdam, the Netherlands

sctions to be

itions of imput,

sizple slzoritmms, snd

is
P imitiolized varishles and s consistency check on userdeclared dynamic properties of rules,
ALE:

progrems e1lows

Tue optimizability o

1. Lntmducu,on

2 nigh-level progremming language
des]g,; Lo induce the user to write his
s in & well-structured way. The language
any pmblem et cvggeste

a1

o snalye
wmbi“lzl..onm problems, E.rtlf].':].zll ﬂ_ntelli_genoe
)

provlems =t

is a wp ription of
hen is o be ﬂ.one complex g;:t].ons are defined
in terms of {usually) less complex omes, which
in turn are ined in terms of still simpler
ones, and so om, until a level is reached at
Wu.ch further decompositlon iz undesireble.
progran consists of a set of such
defmim.oh 4in = notation mot unlike the rules
of an affix gramar (Koster [1,2], Crowe (31).
In fuct, many of the ideas in A_.EEH were derived
from the theory of affix grammars; for example;
repetition iz expressed, not by a goto or while
statement bul by whet In 2 grommar mar would be
called ‘right recursion’.

The smtsx snd semanbics of ALEPH are so
1t is possible to statically derive
properties of the dynamic bebavier
of the program. For example, the compiler can
easily verify thet mo varisble will be used
before obteining & value. Thus the use
of unimitielized varisbles is prevemted in
a matural wvay, without resorting %o the
(dangerous) trick of sutopatic initialization.
ilso, the compiler csn detect logical
constructions thet imply whet s goenewally
ealiod 'baskirack!, s peov ;

9/73 of the Dept. of Computer
Tematicsl Centre, Amsterdam.

the programmer to formilate algorithms with all
ance ipherent in a top-down formulubion and

avertheless obtaln good machine code.

The symtactic simplicity of ALEPA progrems
can be ubilimed for a different purpose:
optimization, Tre compiler can trensform the
program into a directed grapa snd thereby
Teadily detect recursion, thus permitting a
transistion non—Tecirsive
urthemmore, tais directed graph
for storese optimization. Thus the
cen formilate algorithms with all the
clegance inherent
nevertheiess oblain good machine code {pre:
even more compact than he could have cafely
written himself).

Because the semsntic primitives needed for the
translation are smsll in nurber and simple
in nature (‘pﬁas parameter!, ‘feall procedure
cond1t10ually , ete.), the transfer of the
er from one machine to another is quite
straightforverd. As, however, additionsl
sementic primitives may be defined by ‘the
programer (c.g. miltilength arithmetic,
Toonvert, to hash code’, or wnatever he thivks 19
a primitive of his problem), the portsbility of
the program {as opposeu to that of the compiler)
is determined by the portebility of these
programer—efined primitives.

Tne present work 1s a contimuation of t,hs
research started by C.H.A. Koster,

resulted in the development of CDL (Compller
Description Langusge) [4]. His CDL-compiler
gave us a great deal of experdence with
arfiy—zramar—like languages, from which ALEPE
has benefitted.

& tio-pass comp
optimizing two-pass

writben in ALEPH,
mechine—independent. Our versions yield assembly
langsuege code for the CDC Cyber Computers.
AEFH is presewtly oeing ueed T ke

jon of g machi AIGOLGE
compiler,

74 PROGRAMMING LANGUAGES

It skowld e borne in mind that tals paper
not =n AEPE merual: 1% does mot cover tme
Tnztesd e motiveted account
nt points ia given, kn ALTPE
manusl is due to appeer in a few months at the
Mathematical Cemtre, émsterdam, Tae Netheriands.

2. Criteris.

2.1. Goals.

Our main gosls in
following:

s, I6 mast allow od programming st e
£fort and = moderate price.

b. Sines AIZPH is =2 ool amd not & goal in
itsel? ihe compiler for 5% be simple,

g. Do allow the upplicetion of the slzoritims
written in ALEPI on & wide range of machines,
the compiler must e vortzble (ss far as
possibla).

were

The above remalrements vers wigmenbed

our inglitube ALEPR is
miinly inteaded for compiler wriving, sorving
elgorithms, text-editing, etc., emphesis is on
facilitating non-mmeric symbolic ing.

ified

e. Since it was clear that we shall have to do
for a long time to coms with early apd mid third
generestion compubing equipment, tie compiler
wnst ro% require mny advasced hardwere.

2.2. Good progremming.
Two different approsches sere taken f’or the
effecting of such a vague notion b

Firatly the literstie contalns
constitutes zood pro

[5, 81, Wirth [91,
many of Gaese ideas were

T2 hm 1 recognize good progremming and

promote it.
I5 1is mot gemerslly possible to disallow bud
programming: & language thet is powerful

enough to formilate ony slgoritim in it is
slso gowerful emcugh to formlste It messily.
Hevertheless o

, it is often Tossible bo maks
"gesirable! construction more conveniemt bhan an
"urdesirable” one:
not so much depend

2 e

sver doss so

bt un._logom‘ly, it is perfectly
"jom g1l over the place in AIES

unyboey ever doss so

tion is just too cumbersoms.
T shonia bo noted Shab, suwprisingly, it is
somoiimes poseibie o forbid bed programming:
for exemple, most high-
effectively prevens o jump to deta.

ince tre

2.3, Effors.

We orequire the “zood programming' %o
= ressonsble effort”,

festure that 1s normaliy

progromming langusges

an acceptuble elter')atlve

benished from ALEFE

G be present.

2.4, Price.
We also require Lhe good pmgmmm._ "at g

is
we shc\.ld be m__mQ to acespt certain losses
for izhjevel langusze. Thess
losses, miss 5ot depend on the style
of programuizz in such z wey as to
is more effiejent
information %o subroutines in global vari
than in parameters, Consequently, the
compiler will have to do thorough optimization,
and, for simplicty, the constructions in tne
Lunfusge should allow essy optimization.

in many

£.5. Simplicity.
Toe required simplicily of the
ets with the tendency to make ALE]
hlgh—level a3 possible and with the need for
extensive optimization. Some trade—off is to be
expected hers.

2.6. Portability,

The grestest problem in portsbility is the
portsdility of the object code. Our solution is
to produce machine—independent object code of
sn extremely simple nature. be
produced internally =nd comverted directly to
pertinent mechine code (for production) or can
be produced exmmally and ‘then be comverted

2.7, Hardyers.
stack or microprogrming
available. Consequently, some Tairly elaborsts
1ike chieck on non-recursivity,
Nevertheless +the object code
make good usame of the sbove
sdvanced Testures.

1ike Ertaal

ALEPH, A Languzge Encouraging Program Hierarchy 7

3. The Language.

3.1. The grammar form.
Tt is well known that. s grammer is sn excellent

which we specify a 1ist of mmbers separated by
comas:

input: number, rest mumbers option.
rest mumbers option:
comma sysbol, mumber, rest mmbers options

{or, in Backugs Normal Form,

<inpute> <aumber><rest mambers option>

<rest mumbers option>
<comma symbol-<number><rest mmbers option> |
<empty>)

we specify a (seemingly much more complicated)
parenthesized tree in infix notation:

tree: item;
open symbol, tree, ltem, bree, close symbol.
them letter.

Tt is also well known that under a wide
variety of circumstances such a grammar can

described: for reading "input”, Tead a "mumber''
and then read a "rest numbers option". For
reading a “"rest mmbers option", either if there
is o commm read 1%, vead a "mmber” and real o
"rest mumbers option", or you're done.

Of course there is no reason why a

should enly be used for the definition of input
instructions. The grammar

sort: splift imbo two lists, sort first list,
soxt second LLst, merge.

sort first list: is ordered; sort.

sort second 1ist is ordered; sort.

describes a widely-used sorting technique, or
rather a family of these. Here the great value
of s as a programing device becomes
prominent: we are forced first to define the
genersl skeleton of the program in a clear way
and then o refine the algorithm by filling in
the details in s hierarchical Gescent, After the

ition the actusl forms of "split into
merge” and "is ordered” are still
The rule for "is ordered" could decide

rearrangement, without affecting
the basic workings of the slgorithm, "spiit
into two lists” could just cut the list in the
middle and then "merge” would have to be fairly
complicated, or it could split tue list into twe
%5 in such a way $hat &1l the elements in ke
first list are smaller than those in the sscond

1ist, “merge” would then be empty and we would
obtein Quicksort (Hoare [101).

The formlstion of algorithms in the form of
a grammar has, in the three years of our
experience, proven to be an excellent technique
for enhancing their well-structuredness.

Ence having decided that the gramar—form will
be the basis of our langusge we must answer
three fundamental questions. What 1s the exact
flow—of—control? How do rules commmicate?

how 1is the semanties specified for rules that
are not further decompossble (terminal symbols)?
Furthermore we shall have to provide data types
and some input~outpus, enil for the bemefit of
the user we shall have to add some syntsetic
sugar.

3.2. The flow-of—conbrol.

From & formal point of view the rule for “iree™
mentioned - above should be read ast there is a
iree either 1f there is an item or if there

item, euother tme ani o close-symbol. Tae
Floy—of—control suggested by is cbvioms:

check for the presence of an item and, if that
fails, check for a succession of open—symbol,
tree, item, tree and close-symbol and if these
are not all present then there is no tree. This
interpretation 1s wnacceptable since it can only
be implemented through the use of arbomatic
backtracking. Moreover, it is not even adequate.
Suppose we want to inspect two objects, if they
are both integer add them and if they are both
character concatenate them:

combine:
is first integer, is second integer, add;
1is first char, 1s second char, concatenate.

If “"is first integer” now succeeds and "is
second integer" fails, then we not at
all interested in the second alternative and
should fail right avay, In our
experience the best programs are those in
which in all rules the first members of the
slternstives succeed under mutwally exclusive
circumstances. The first wember of an
alternstive can then be consideved as the key
to thet alternstive: if the key £its, ~the other
altematives are no longer of interest. There 1s
a strong analogy bere with LL(1)~grammsrs (Knuth
[11]). In an LL{\}~gremmar, if the first symbol
is present (the Tfirst member succeeds) the
rest of she altermative 1is to te
present {furthor members camnot fadl), thereby
completely removing the problem of backtrack.
The sbove example, however, shows that this
is too stringent a requirement for a computer
lemguege since it would effectively fosbia
the logical conjunction. S

followlng e for the flow of control:

76 PROGRAMMING LANGUAGES

Tirst meber selects the pertaining altemetive,
if any; the rule succeeds if all members in the
pertaining alternative succeed and it feils if
one of these members fails or if no altemative
was selected.

45 an important consequence theve is only ome
wey to reach a glven member M in & given
alternative A: all Tirst members of altematives
preceding A must have failed and all members in
4 preceding M mist have succeeded. This simple
Tule is often wsed in deriving assertions about
the program, both mechanically {e.g., check on
status in 3.3. and check on left-recursivity)
snd by band,

The above interpretation reintroduces the
problem of backtrack, However, mnot all "o
questions in a row" give rise to backtrack: in
the simple comparison of three mumbers:

equal a b end o equal a and b,equal b and o.

the first meaber may succeed and the second
21l, without requiring backirack. Therefore
Tules are divided intc o groups, those thut
effect global changes ("nave side—effects") and
those fhat do mot. The rule for constructing
alternatives is then: omce & rule with
side—effects has been called, the rest of the
slternative must be guarambeed to succeed,

Although the compiler could itself determine
vhether a rule has side—effects, this is mot
done. Instead, this informtion is given by the
user and checked by the compiler, as a form
of useful redurdancy. Often a conceptual error
results in s rule that was thought to be free of
slde—effects having side—effects.

In the sbove, rules are used to decide the
presence of the desribed constructs, e.z., trees
(amd, possibly, to process them). In many
cases, however, the progremmer knows that the
construct Is present: the tree mmist be present
or something is wrong: -

tree: item;
open symbol, tree, item, tree, close symbolj
error message.

Rules are again divided into two groups: those
that can fail and those that always succeed.
As befors, the compiler could find this out,
but for reasons explained sbove the programmer
specifies his opinion on the rule, whici opinion
i then clwcked by the compiler. And again, his
form of redurdency proves to be very userul.

The two division oriterfa can be combined,
yielding four groups:

has side—effacts: 'predicate’
can fail, has no side-effects: 'question'
cannot fail, has side—effects: *action®

cenmot fall, has no side-effects: 'funetion!

In this terminology “tree” showld be an
‘action’. Now the item between the two trees may
be missing, so a programmer might write:

'action' tree: item;
open symbol, tree, rest tree;
error message.

*action' rest tre
item, tree, close symbol; error message,

The compiler would find two errors {given
gulteble definitions for the missing rules).
"Rest tree" iz not an faction!, and the “close
symbol” causes backtrack (over tree and item),
These two errors, admittedly e as they
are, would probably mot be detected in mst

Wl
commnication between the motions in a rule.
Formaily such o way 1s provided by the affixes
in an affiz-gramar (Koster [2]): AIEPH uses a
Paremeter mechanism that is very mich akin.

ALL formal verisbles (parameters) are local to
‘the rule they belong to, as are the local
veriables. Some formal variables ere prefilled
at call enftry with the values of the sctual
parsmeters (corresponding to 1-bound—affixes),
some formal varishles are still uminitialized
at call entry but thelr values will be
used by the ealling rule (corresponding to
8 —bound—affixes),

parometers that will be used by the caller.
if the Tule fails,
wever need these values: they will mot even be
passed back at call exit, so Shat In that
the mile does ot have %o provide
copy-maybe-vestore” mechanism has
of the standard “copy-restore”
efficiency of parameter access,
addresses on the stack) snd moreover
provides a onelevel backtrack free of charge: a
tively mess up its paremeters, amd
if it them decides to fail, nothing needs to be
restored (since only copies were spoiled).

H
£
i

ALEPH, A Language Encoutaging Program Hierarchy 77

Since the status (initialized or mot) of all
formal and local variables 1s known at call
entry; since this sbatus before the execution
of a member, together with parameter
description of that member, determines the
status after the execution; and since there is
only one way to reach a certain point in a rule,
the compiler can readily constrct the stabus ab
€ll points and perform a reliable check on the
use of \mmitialized variables.

This proves to be very helpful in
d.etec'tmg (logicsl) errors.
For = example ve

Teturn to the list of numbers
separated by commas mentioned in 3.1., ard we
suppose that we want to read them, add them and
print the sum:

taction® input — res:
number + res, Test mumbers option + res,
result + res.
Taction' rest mumbers option + >res> — mmb:
comma symbol, number + mmb, sum + mmb + res,
Test mumbers option + res;

+.
Taction' mumber + reg>:

get int + input file + res;

error + bad mumber, 0 —> res.
Taction! sum + >x + >y

sdd + x + y + y3 error + overflow.

The pluses affix the affixes to the rules.
Co-ordering with pluses is used rather than
sub-ordering with parentheses. The use of

parentheses would have implied the possibility
of nesting: this nesting, however, is not
allowed. Moreover, parentheses sre already
beé.ng l)lsed extensively in a different way {see
3.6.1.0.

The minus slgnals a local veriable, The right
arrov-head tt of "res" indicates that
"res" will ‘ne prefilled, the one at the back of
"reg" indicates that after the call the yalue
il be returned to the calle

The local varieble "peot is ‘minitialized b
, from the declarstion of
it follows that it will not use the
value of "res" (which would have been illegal)
bub will return a value to 1%, So, at the first
comms, "res" is initiglised and may be sffixed to
"rest numbers option" which uses its value.

The sbove notation precimies the inbroduction of
operators end type procedures in ALEPH, and
in fact they do mot exist in ALEPH, Although
we readily conceds thet operators amd type
ofter alley & very olegmut
formlation of an slgorittm, we also feel
that they tend o leal to unjustifiable
simplifications, By the nature of it, an
operator or btype procedure yields only ome
result (if we disregaxd
it is doubtful if, e.z.,

‘the result of the

inversion of = matrix can be expressed in ome
matrix, apd it is simply not tvue that the
result of the addition of Gwo imtegers can be
expressed in one integer (since overflow may
occur). Bspeclally the latter fact is poorly
appreciated both in high-level languages and in
hardware. In the worst case what is called the
"add-instruction” is in fact a bit-shuffler that
happens o yleld the sum in about 75 percent of
the cases. In a slightly better case the program
comes to a grinding halt or some pre—abtached
progrem is called, with all the misery
inherent In imterrupts. In fact theve is no aad
instruction: all there is 1s an edd request,
vhich, like =y other request, can fail to be
sstisfied ard which 1s a 'question' in the sense
of the sbove. This is correctly recognized by
that hardware that sets an overflow bit, which
bit is then, more often than not, boldly ignored
by the high-level language.

There are a few requests that can elways be
fulfilled: e.g., 1% is alvays possible %o set
one variable equal to the value of the otber.
Indeed the assignment 1s written with the aid
of an operator: "0 -> res® in the example above.
Note that this instruction is necessary to
sustain the claim thet “number" always assign
a value ‘to its formal varlable "res>": we are
t alloved to let the progrem carry on with a
gkost' value, even after an error—wessage.

3.k, Primitive rules.

Fules are specified by their decompesition into
other rules, This process must end somewhere; it
can end 1n ome of three ways:

a. The required action is & primitive of ALEFE,
e.g., assignment.

b, The required mction is known to the compiler

uder a standard name, e.g., the 'predicate'
“get int" eand the ‘!question' "aad" in the
example above.

¢. The required action 1is part of the problem
but cammot be decomposed (e.g., the activation
of particular hardware) or must be described on
a lower level for reasons of efficiemcy (e.g.,
‘the caleulation of a hash address from a given
string).

In cases a) and D) there is no problem for the
user and only a one—time problem in transferring
to another machine: the primitives mist be
reprogrammed. Case ¢} 1s exceedingly rare but
mst be catered for, FRules can be declared
external' in AIRPE under specificabion of the
parameters and fhe concerning semantics mist be
supplied by exbernal means, e.g., at the level
of machine code (in which case, of course, there
is no portability).

78 PROGRAMMING LANGUAGES

3.5. Data types.
The langusge defined so far does not rely in any
way on the properties of the data types (except
perhaps that rules ss data would be inconvenient
and yould violate simplicity requirements). We
are still at liberty to define the data types
we need. For our applications and for ressons
of simplicity we have resticted ourselves to
integer data (already Introduced sbove) amd
stacks of these, The latter have the usual
property that top elements mey be added,
inspected =nd removed. In addition, they have
the following properties:

a. ALl elements can be reached, thus the stack
can oot &S an syvay. Arrays in the standard
sense canmot be allowed since they may contain
mixed initialized wnd uninitielized varisbles.
b. Bottom elements con be removed, thms the
stack can act es a queue. If the queue walks out
of physical memory it is simply pushed back by
the runtime system and since all references to &
stack go through its base sddress only this base
address needs to be updated. Bottom elememts
camot be adfed: a deque (Kmuth [12]) is much
mre complicated to implement, is hardly ever
useful and in emergencies cen be simlated by
o queues,

¢. Each stack has its own private piece of the
virtual address space (which in total extends
from minus the mes imteger to plus the
meximum integer), se that 1f an integer is used

88 an index to a sback, 1t identifies that
stack. Thus dynamically complicated objects can
be efficiently unraveled by extracting stack

The sbove data typec are easy to Implement
and constitute very convenient tools for data

that have proved their value im
practice, especially in combimstion with
deta-description-like rules for the processing
of data. For example, a list (in "list stack")
whose elements consist of items Eca.].led "item")
and fndices to the next element (called "nexct"}
is processed by:

Taction! list + >handle:
process + ltemiist stack[herdle],
Test 1ist + nextXlist stack[handle].
*action’ rest list + >handle:
was + 1ist stack + handle, list + handie; +.

where "process” must be given by the user and
"was" is o 'question' known 1
which tests whother "handle” is an index to
"list st?ck" {if 4% fails there are 1m0 zore

&l agen

Although these data types are safer than the
usual data types in langusges (all reachable
verisbles have a value wnl most logicel errors
are caught immedietely by indices being apulied
‘to fhe wrong stack), they unfortusntely lack the
rigour and reliability of the Flow—of-contzol
explalned in 3.2. and 3.3. (mmtime checking
iz £ti11 necessary end the "damgling reference”
problem is not solved). The reason is simply
that the state of the art in grammars amd i
hiererchical programming is much more advanced
than that in data structures. Even the presently
mOSt avanced daba structurss, those of ALGOL
68 (van Wijngsarden [13]) ceammot be erafted
in a simple way to ALEPH: we would lose
the edvantages meationed ekove, the ALGOL 68
solutlon %o the "dangling reference” problen
{scope checking) still needs dynamic checking

We hope and
expect that many of these trouble—spots can be
nied in the near future.

3.6. Syntactic sugar.

In 3.6.1. and 3.6.2. some sxamples are given of
fegtures solely inmtended to make the langusge
more convenient to use.

3.6.1. Flow—of—control.

When we read the short program given in 3.3, we
can essily see that it is overly recursive.
recursive call of "rest mumbers option” in “rest
numbers option” puts a copy “res™ of "res” on
the stack, works on "res™ aml then restores
"res” to "res™: it could as well have worked on
"reg" directly. Moreover, the said call puts &
return Livk on the retum link stack thet points
directly to o "return over returm link stack"
instruction (since "res" needs no longer be
restored and the present ‘call ic the last oms
in an altemative) so it could sas well be
left oub. All that is left of the call is the
(re)-activation of "rest numbers option" and as
such it correspords to @ simple amd clean jump.

*action’ rest numbers option + >res> — rmb:
compa symbol, mumber + mub, sum + rmb + res,
iTest numbers option; +.

Conversely, he may use the jump only as
last member of un alternative in an 'action? or
'fugction! and 1t is then considered shorthand
for a recursive call with the same parsmeters as
the original,

;
i
i
H

ALEPH, A Language Encouraging Program Hierarchy 79

slthough the compiler would have found tiis
optimization, the user, ' by indicating this
simplificabion himself, has galned something:

— "rest mumbers option" 1s now only called In cme
piace, in “input”, and can be substitubed there.
The same holds for "sum", so that the program
reduces to:

faction' input — res: number + res,
rest mubers option — mmb:
{comma symbol, mumber + b,
sz

(add + mmb + ves + res;
error + overflow),
+ Test mmbers opbion;

+)s
result + res,

faction’ number + res>:
et Int + input file + res;
error + bed number, 0 —> ree.

3.6.2. Data types.

In addition %o formal and local varishles
MIEPE allows global variables. Although we are
ayare of their wdesirability and of the great
opprotunities they afford In bal progremming
(Wulr, Shaw [6]), we do not see a way to do
without them in the present framework. Some
information (liks, e.z., a character counter
on the input in a compiler) must eventuelly be
avallable to virtually all rules (since, again
in & compiler, virtually all rules can cause
a call to the error-roubine which prinmts a
diagnostic message including said character
counter). Consequently, this information must be
passed as a parameter to all these rules. The
came In essence applies to all I/0 information.
By way of experiment we rewrote a fair—sized
ALEPH program (concerning mde-handling in ALGOL
68) uwnder the elimination of global varisbles
{except I/0 information) ard found that the
average mmber of affixes per rule wemt up from
1.5 to b5, We consider this too high & price:
only u profowndly different approach to data
types may yleld a solution.

It should be noted, however, that the misuse of
global variables is limited by their temdency to
cause backtrack errors upon careless handling.

Globsl varisbles must be initialized upon
decalrabion. Their values can be chenged by any
nule. Tt is also possible to declare initialized
constants whose valuss cemnot be changed. Aside
from the convenience of this feature 1t also
aids in good progremming, It sppears that the
occurrence of a hard integer demotation in a
rule is generally unjustified. Tellying hard
integers in some sample programs has tenght ug
that only roughly 1 in 50 integers 1s used in
lts integer meaming. For the rest ihey were
either variebles of the problem that happened
% be constant most of the time (1ike 1inewidth

of the primter, number of bits in a character,
ete.) or temminators in data structures where
"nil" chould have been used. We serfously
contemplate disallowing hard integers in riles
and only allowing them in Initislizations.

k. Heferences.

[1] Koster, C.H.A., On the construetion of
ALGOL-procedures for generating, analysing and
translating sentences 1n natural languages,

T2, Mathematical Centre, Amsterdam {1965).

[2] Koster, €.H,A., Afrix-grammers, in ALGOL 68

Iuplementation, ed. J.E.L, Peck, Norga-Folland
Publ. Co., Amsterdam (1971).

i3] Crowe, ., rating Parsers for AFTix
Grapmars, Comm, A4CM 15, 728-73k (1972).

4] Koster, C.H.A., A Compiler Compiler, MR
127/71, Mathematical Centre, Amsterdam (1971},

[51 Dijxstra, E.W., Notes on Structured
Frogramuing, ~Rep 70 Wsk 03, Math. Dept.
Technicel University, Bindhoven (1970).

[8] war, w., obal Variable Considersd
TamfW", SIGELAN Notices 8 (2), 58-3k (1972).

[7] Danl, 0., Dijkstra, E.W., Hoare, C.A.R.,
?tmc;mﬁ Programming, Acedemic Press, London
1972).

[8] Dijkstra, EW., Go To Statement Considered
Hexmfd, Comm. AQK 11(3), 147 (1968).

(9} wirth, ¥., Progrem development by ctepwise
refinement, Comm. ACM 14(%), 221 (1971).

[10lHoare, C.4.R., “Quicksort”, Compiter J. §
(1), 1015 (1962).

[11]Knuth, D.E. own syntactic analysis,
Acta Informatica 1, 79-110 (1971).

[12Jknutk, D.E., The ATt of Computer
Programning, Vol I, pp. 235239, Addison—Weslsy,
Tomdon (1969).

[13]van Wijngasrden, A, ({ed.), Report on the
Algorithmic Langauge ALGOL 68, Numer. Math. 1k,
79218 (1969).

