Numerical Conversion to Mixed Base
without Division — and Vice-Versa

Dick Grune
dick@dickgrune.com

Feb. 2, 2011

1 Introduction

As soon as there were computers they were used for numerical conversion, in
base 10 from binary to decimal, but also in mixed base, for example from pennies
to £sd. Numerical conversion is usually done by repeated division, but not all
of the early computers had a divide instruction, so other means were required.
Division can of course be simulated by repeated subtraction, but that is quite
inefficient. The algorithm presented here does conversion, possibly to mixed
base, in a few instructions per digit; I think I saw the technique first in code
that came with the (British) Elliott 503 computer in the late 1960s. That
computer had a divide instruction, so the technique itself must be older.

2 Algorithm

The algorithm computes the next digit d for an input value v by first repeatedly
subtracting a suitable number, the downstep from v, until it is negative or zero,
while at the same time raising d appropriately; and then in the same fashion
adding a correction (usually a unit) to v until it is positive or zero, while
lowering d. The downsteps and corrections are kept in a table, two entries for
each digit. For example, the table for computing the tens in decimal conversion
is

{30, 3},
{10, 1},

which means first subtracting thirties from v while raising d digit by threes, and
then adding tens to v while lowering d by ones. Each of these actions keeps the
value of the combination of v and d unchanged.

The initial value for d is obtained from a template; Figure 1 shows the code.
The variable e is a pointer to the pertinent table entry; the computation of one
digit moves it two entries forward. The algorithm converts a number to base 10
at a cost of 4.3 actions per digit.

This table-based approach is more efficient than just counting down (6.5
actions/digit), but equally importantly, allows the individual specification of
the base for each digit.

2 ALGORITHM

set e to point to the top of the conversion table
while template is not exhausted:
get next digit d from template (usually a ’0’)
while v > O:
decrease v by e->value
increase d by e->repr
shift e to next table entry
while v < O:
increase v by e->value
de rease d by e->repr
insert d into the string
shift e to next table entry

Figure 1. Code for converting v to a string.

Template: "L00.00s.00d."

{10%10%20%12, 1%}, /* skip the pounds sign */
{10%10%20%12, 1},

{ 3*10*20%12, 3}, /* ten pounds */

{ 1%10%20%12, 1},

{ 3*x20%12, 3}, /* one pound */

{ 1%x20%12, 1},

{ 1%20%12, 1}, /* skip the dot */
{ 1%x20%12, 1},

{ 1x10%12, 13}, /* ten shillings */
{ 1%10*%12, 1},

{ 3*x12, 3}, /* one shilling */
{ 1x12, 1},

{ 1x12, 1}, /* skip the s */

{ 1%x12, 13},

{ 1%x12, 13}, /* skip the dot */
{ 1x12, 13},

{ 1%x10, 1}, /* ten pence */

{ 1*10, 1},

{ 3, 3}, /* one penny */

{ 1, 1}

Figure 2. Table for conversion from pennies to £sd.

DivFreeConv — 2 2011-02-02

2 ALGORITHM

set e to point to the top of the conversion table
while template not exhausted:
if e->repr:
get next digit d from template
while v > O:
decrease v by e->value
increase d by e->repr
if e->repr < 0:
insert d into the string
shift e to next table entry
replace v by -v

Figure 3. Code for converting v to a string with one while loop less.

The table in Figure 2 converts sums up to £99.19s.11d. from pennies, start-
ing from the template L00.00s.00d.. The non-numeric characters in the tem-
plate are skipped by treating them as digits of base 1. The bases of the “big”
digits, those for shillings and pence, are 20 and 12 resp., but their values must
be printed in the decimal system; the table shows how this is handled. Although
the downsteps and corrections, 24000, 7200, etc. could be entered directly in
the table, it is more convenient and understandable to write them down as the
product of their factors, to show how they are constructed.

The downstep can be chosen arbitrarily, as far as correctness is concerned.
As long as the correction is the unit value of the digit under conversion, the
algorithm will always give the correct answer, but some downstep values are
more efficient than others. If the downstep is equal to the unit, division by simple
subtraction results. The downstep in the tables was chosen to approximate the
square root of the base. This seems intuitively a good choice; below we show
that it indeed is.

The algorithm is not very robust: converting a negative value or one that
does not fit the template results in (understandable) garbage. For example,
converting —1 with the template 0000 yields /999. Here / represents the digit
-1, and indeed (—1) * 1000 + 9 * 100 + 9% 10+ 9 = —1.

In good 1960s style the two while loops in Figure 1 can be combined into one.
The trick is to keep v positive by inverting it for the second while statement, and
correct the effect by inverting the digit correction in the corresponding entry
in the table. The code for this is in Figure 3. It is to be used with a table
containing entries like

1

{30, 3},
{10,-1},

and contains more trickery than I care to explain.
A working demo of the above algorithms in C can be found in the file demo. c.

1This was the time that E.W. Dijkstra, later structured programming guru, said: “Any
program can be done with one instruction less.”

DivFreeConv — 3 2011-02-02

4 THE OPTIMAL VALUE FOR THE DOWNSTEP

set e to point to the top of the conversion table
while template is not exhausted:
get next digit z from template
get next digit d from string
while d > z:
increase v by e->value
de rease d by e->repr
shift e to next table entry
while d < z:
decrease v by e->value
increase d by e->repr
shift e to next table entry

Figure 4. Code for obtaining the value of a string.

3 Converting from a string

With minimal modification the algorithm can be run in reverse, obtaining the
numerical value of a string. The code to do this for one digit is shown in Figure
4. Note that the digit z plays the same role as the 0 in Figure 1.

This algorithm is even less robust than the previous one; converting a string
that does not exactly match the template gives utter nonsense.

4 The optimal value for the downstep

Intuitively it seems a good idea to set the downstep to the the square root of
the base, but showing it really is takes some work. Basically we want to express
the number of actions required for converting a value n as a function ¢ (n, N, x)
of the downstep x, where N is the base, and then sum this function over all
values of n between 0 to N — 1. This gives the cost C(V, z) of converting one
“decade” of size N, corresponding to one digit. So

C(N,z) = 2N \ei(n, N,).

n=0

The function ¢;(n, N, x) as a function of n is a slowly rising saw tooth, each
next tooth representing one more downstep. This is handled most easily by
splitting n into iz 4 j, with 0 <4 < (N/z) and 0 < j < (x — 1). This allows us
to replace Zﬁy;olcl (n, N, z) by Zgéx)lei;&CQ(i,j, N,z). Note that this is an
approximation when NN is not a multiple of z; we will return to this further on.

We now turn to ¢a(%, 4, N,z). If n contains i times z, there will be i + 1
downstep actions. The result is iz + j — (i + 1)z = j — x, and & — j correction
steps will follow; so

Cg(l’,j7N7£C):7;+1+III—j

Note that even for n = 0 a downstep action will normally follow, since n = 0

only means that the present digit is zero, not that v is zero. Only when v = 0

there will be no downstep, but we ignore that for our present computation.
We now get

Nigea(iy g, Nox) = Si(i+1+a—j) = S0+ 1+2) - Xi5j =

DivFreeConv — 4 2011-02-02

4 THE OPTIMAL VALUE FOR THE DOWNSTEP

1 1
z(i+142z)— 517(1:—1) :xi+§:ﬂ(z+3)
written this way because we next want to sum over i:

(/o)1 . 1 N1
C(N,z) = 5,207 (i + §x(x +3)) = :cf;(; -1+ ;ix(z +3) =

N N N N
2z(N—x)+—w(x+3) = _—(z*+22+N) 25(,7:—%2—1—;) =

2x 2x
N N
C(N,z) = —(z+—)+N
2 x
It is well known that this formula has a minimum for z = /N 2
our intuition.
Both in replacing Zggém)fli by %%(% —1) and in determining the minimum
of (x+ %) by differentiation we have stepped outside the integers and treated x
as a real number, which is then rounded or truncated. This is acceptable since

the minimum is quite shallow. Using 4 as a downstep requires 4.5 actions/digit
(4.3 for downstep 3), and for N = 100 we find:

, confirming

x actual cost C(100,x)
7 1170 1164.29
8 1134 1125.00

9 1100 1105.56
10 1100 1100.00 (= 11.00 actions / digit)
11 1110 1104.55
12 1134 1116.67

so the position of the exact minimum is not very important. Also, doing con-
versions with bases much larger than 10 is inefficient: by decomposing the con-
version base 100 into two conversions of base 10 each, by using the table

{30, 30},
{10, 103,
{3, 3},
{1, 1},

we can do a conversion for 8.6 actions per digit.

Zd%c(z—i— %) =1- %; set % to zero, and obtain 1 = % — z=VN

DivFreeConv — 5 2011-02-02

